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Abstract 

Class loaders are a powerful mechanism for dynamically 
loading software components on the Java platform. They 
are unusual in supporting all of the following features: 
laziness, type-q? linkage, user-defined extensibility, and multiple 
communicating namespaces. 

We present the notion of class loaders and demonstrate 
some of their interesting uses. In addition, we discuss how to 
maintain type safety in the presence of user-defined dynamic 
class loading. 

1 Introduction 

In this paper, we investigate an important feature of the 
Java virtual machine: dynamic class loading. This is the 
underlying mechanism that provides much of the power of 
the Java platform: the ability to install software components 
at nmtime. An example of a component is an applet that is 
downloaded into a web browser. 

While many other systems 1161 1131 also support some 
form of dynamic loading and linking, the Java platform is 
the only system we know of that incorporates all of the 
following features: 

1. Lazy loading. Classes are loaded on demand. Class 
loading is delayed as long as possible, reducing mem- 
ory usage and improving system response time. 

2. Type-s@ linkage. Dynamic class loading must not 
violate the type safety of the Java virtual machine. 
Dynamic loading must not require additional run-time 
checks in order to guarantee type safety. Additional 
link-time checks are acceptable, because these checks 
are performed only once. 

3. User-denable class loading policy. Class loaders are first- 
class objects. Programmers have complete control of 
dynamic class loading. A user-defined class loader can, 
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for example, specify the remote location from which 
the classes are loaded, or assign appropriate security 
attributes to classes loaded from a particular source. 

Multiple namespaces. Class loaders provide separate 
namespaces for different software components. For 
example, the HotjavaTM browser loads applets from 
different sources into separate class loaders. These 
applets may contain classes of the same name, but the 
classes are treated as distinct types by the Java virtual 
machine. 

In contrast, existing dynamic linking mechanisms do 
not support all of these features. Although most operating 
systems support some form of dynamic linked libraries, such 
mechanisms are targeted toward C/C++ code, and are not 
type-safe. Dynamic languages such as Lisp 1131, Smalltalk 
[6], and Self [21] achieve type safety through additional 
run-time checks, not link-time checks. 

The main contribution of this paper is to provide the 
first in-depth description of class loaders, a novel concept 
introduced by the Java platform. Class loaders existed in 
the first version of the Java Development Kit (JDK 1.0). The 
original purpose was to enable applet class loading in the 
Hotjava browser. Since that time, the use of class loaders 
has been extended to handle a wider range of software 
components such as server-side components (servlets) [ll], 
extensions [lo] to the Java platform, and JavaBeans [8] 
components. Despite the increasingly important role of class 
loaders, the underlying mechanism has not been adequately 
described in the literature. 

A further contribution of this paper is to present a 
solution to the long-standing type safety problem [20] with 
class loaders. Early versions (1.0 and 1.1) of the JDK 
contained a serious flaw in class loader implementation. 
Improperly written class loaders could defeat the type safety 
guarantee of the Java virtual machine. Note that the type 
safety problem did not impose any immediate security risks, 
because untrusted code (such as a downloaded applet) was 
not allowed to create class loaders. Nonetheless, application 
programmers who had the need to write custom class loaders 
could compromise type safety inadvertently. Although the 
issue had been known for some time, it remained an open 
problem in the research community whether a satisfactory 
solution exists. For example, earlier discussions centered 
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around whether the lack of type safety was a fundamental 
limitation of user-definable class loaders, and whether we 
would have to limit the power of class loaders, give up 

lazy class loading, or introduce additional dynamic type- 
checking at runtime. The solution we present in this paper, 
which has been implemented in JDK 1.2, solves the type 
safety problem while preserving all of the other desirable 
features of class loaders. 

class ClassLoader { 
public Class loadClass(String name); 
protected final Class defineClass(String name, 

byten buf, int off, int len); 

protected final Class findLoadedClass(String name); 
protected final Class findSystemClass(String name); 

We assume the reader has basic knowledge of the Java 
programming language [71. The remainder of this paper 
is organized as follows: We first give a more detailed 
introduction to class loaders. Applications of class loaders 
are discussed in section 3. Section 4 describes the type safety 
problems that may arise due to the use of class loaders, and 
their solutions. Section 5 relates our work to other research. 
Finally, we present our conclusions in section 6. 

Figure 1: The ClassLoader class 

Applet class loaders Application class loader 
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2 Class Loaders 

The purpose of class loaders is to support dynamic loading 
of software components on the Java platform. The unit of 
software distribution is a class!. Classes are distributed us- 
ing a machine-independent, standard, binary representation 
known as the classfileformat [15]. The representation of an 
individual class is referred to as a class FZe. Class files are 
produced by Java compilers, and can be loaded into any Java 
virtual machine. A class file does not have to be stored in an 
actual file; it could be stored in a memory buffer, or obtained 
from a network stream. 

System classes 
(e.g., java.lang.String) 

System class loader 

Figure 2: Class loaders in a web browser 

The Java virtual machine executes the byte code stored 
in class files. Byte code sequences, however, are only part 
of what the virtual machine needs to execute a program. A 
class file also contains symbolic references to fields, methods, 
and names of other classes. Consider, for example, a class C 
declared as follows: 

We have omitted the methods that are not directly relevant 
to this presentation. The ClassLoader.loadClass’ method 
takes a class name as argument, and returns a Class object 
that is the run-time representation of a class type. The 
methods defineclass, findLoadedClass and findSystemClass 
will be described later. 

class C { 
void f() { 

D d = new DO; 

1 
1 

In the above example, assume that C is loaded by the 
class loader L. L is referred to as C’s defining loader. The Java 
virtual machine will use L to load classes referenced by C. 
Before the virtual machine allocates an object of class D, it 
must resolve the reference to D. If D has not yet been loaded, 
the virtual machine will invoke the loadClass method of C’s 
class loader, L, to load D: 

L.loadClass(“D”) 

The class file representing C contains a symbolic reference 
to class D. Symbolic references are resolved at link time to 
actual class types. Class types are reified first-class objects in 
the Java virtual machine. A class type is represented in user 
code as an object of class java.lang.Class. In order to resolve a 
symbolic reference to a class, the Java virtual machine must 
load the class file and create the class type. 

Once D has been loaded, the virtual machine can resolve 
the reference and create an object of class D. 

2.1 Overview of Class Loading 

The Java virtual machine uses class loaders to load class 
files and create class objects. Class loaders are ordinary 
objects that can be defined in Java code. They are instances 
of subclasses of the class ClassLoader, shown in Figure 1. 

2.2 Multiple Class Loaders 

A Java application may use several different kinds of class 
loaders to manage various software components. For exam- 
ple, Figure 2 shows how a web browser written in Java may 
use class loaders. 

This example illustrates the use of two types of class 
loaders: user-defined class loaders and the system class 
loader supplied by the Java virtual machine. User-defined 
class loaders can be used to create classes that originate from 
user-defined sources. For example, the browser application 

‘Throughout this paper, we use the term class generically to denote both ‘We use the notation X.m to refer to an instance method m defined in 
classes and interfaces . class X, although this is not legal syntax in the Java programming language. 
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creates class loaders for downloaded applets. We use a 
separate class loader for the web browser application itself. 
All system classes (such as java.lang.String) are loaded into 
the system class loader. The system class loader is supported 
directly by the Java virtual machine. 

The arrows in the figure indicate the delegation relation- 
ship between class loaders. A class loader Lr can ask another 
loader I17 to load a class C on its behalf. In such a case, L1 
delegates C to /,>. For example, applet and application class 
loaders delegate all system classes to the system class loader. 
As a result, all system classes are shared among the applets 
and the application. This is desirable because type safety 
would be violated if, for example, applet and system code 
had a different notion of what the type java.lang.String was. 

Delegating class loaders allow us to maintain namespace 
separation while still sharing a common set of classes. In 
the Java virtual machine, a class type is uniquely determined 
by the combination of the class name and class loader. Applet 
and application class loaders delegate to the system class 
loader. This guarantees that all system class types, such 
as java.lang String, are unique. On the other hand, a class 
named C loaded in applet 1 is considered a different type 
from a class named C in applet 2. Although these two 
classes have? the same name, they are defined by different 
class loaders. In fact, these two classes can be completely 
unrelated. For example, they may have different methods or 
fields. 

Classes from one applet cannot interfere with classes in 
another, because applets are loaded in separate class load- 
ers. This is crucial in guaranteeing Java platform security. 
Likewise, because the browser resides in a separate class 
loader, applets cannot access the classes used to implement 
the browser. Applets are only allowed to access the standard 
Java API exposed in the system classes. 

The Java virtual machine starts up by creating the appli- 
cation class loader and using it to load the initial browser 
class. Application execution starts in the public class method 
void main(String[]) of the initial class. The invocation of this 
method drives all further execution. Execution of instruc- 
tions may cause loading of additional classes. In this 
application, the browser also creates additional class loaders 
for downloaded applets. 

The garbage collector unloads applet classes that are no 
longer referenced. Each class object contains a reference to 
its defining loader; each class loader refers to all the classes it 
defines. This means that, from the garbage collector’s point 
of view, classes are strongly connected with their defining 
loader. Classes are unloaded when their defining loader is 
garbage-collected. 

2.3 An Example 

We now walk through the implementation of a simple class 
loader. As noted earlier, all user-defined class loader classes 
are subclasses of ClassLoader. Subclasses of ClassLoader can 
override the definition of loadClass, thus providing a user- 
defined loading policy. Here is a class loader that looks up 
classes in a given directory: 

class MyClassLoader extends ClassLoader { 

private directory; 
public MyClassLoader(String dir) { 

directory = dir; 

1 
public synchronized Class loadClass(String name) { 

Class c = findLoadedClass(name); 
if (c != null) 

return c; 

try { 
c = findSystemClass(name); 
return c; 

} catch (ClassNotFoundException e) { 
// keep looking 

byte0 data = getClassData(directory, name); 
return defineClass(name, data, 0, data.length()); 

} catch (IOException e) { 
throw new ClassNotFoundException(); 

byte0 getClassData( . ..) { . . } // omitted for brevity 

> 

The public constructor MyClassLoader() simply records 
the directory name. In the definition of loadclass, we use 
the findLoadedClass method to check whether the class has 
already been loaded. (Section 4.1 will give a more precise de- 
scription of the findLoadedClass method.) If findLoadedClass 
returns n u I I, the class has not yet been loaded. We then dele- 
gate to the system class loader by calling findSystemC1as.s. If 
the class we are trying to load is not a system class, we call 
a helper method getClassData to read in the class file. 

After we have read in the class file, we pass it to the 
defineclass method. The defineclass method constructs the 
run-time representation of the class from the class file. Note 
that the loadClass method synchronizes on the class loader 
object so that multiple threads may not load the same class 
at the same time. 

2.4 A Class’s Initiating and Defining Loaders 

When one class loader delegates to another class loader, the 
class loader that initiates the loading is not necessarily the 
same loader that completes the loading and defines the class. 
Consider the following code segment: 

MyClassLoader cl = new MyClassLoader(” /foe/bar” ); 
Class stringclass = cl.loadClass(“java.lang.String”); 

Instances of the MyClassLoader class delegate the load- 
ing of java.lang.String to the system loader. Consequently, 
java.lang.String is defined by the system loader, even though 
loading was initiated by cl. 

Definition 2.1 Let C be the result 4 L.defineClass(). L is the 
defining loader OfC, or equivalently, L defines C. 

Definition 2.2 Let C be the result @ L.loadClass(). L is an 
initiating loader qf C, or equivalently, L initiates loading of C. 
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Figure 3: Class Server redirects to a new version of Service 
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In the Java virtual machine, every class C is permanently 
associated with its defining loader. It is C’s defining loader 
that initiates the loading of any class referenced by C. 

3 Applications of Class Loaders 

In this section, we give a few examples that demonstrate the 
power of class loaders. 

3.1 Reloading Classes 

It is often desirable to upgrade software components in a 
long-running application such as a server. The upgrade must 
not require the application to shut down and restart. 

On the Java platform, this ability translates to reloading 
a subset of the classes already loaded in a running virtual 
machine. It corresponds to the schema evolution [3] problem, 
which could be rather difficult to solve in general. Here are 
some of the difficulties: 

l There may be live objects that are instances of a class 
we want to reload. These objects must be migrated to 
conform to the schema of the new class. For example, 
if the new version of the class contains a different set 
of instance fields, we must somehow map the existing 
set of instance field values to fields in the new version 
of the class. 

Similarly, we may have to map the static field values 
to a different set of static fields in the reloaded version 
of the class. 

The application may be executing a method that be- 
longs to a class we want to reload. 

We do not address these problems in this paper. Instead, 
we show how it is sometimes possible to bypass them using 
class loaders. By organizing software components in separate 
class loaders, programmers can often avoid dealing with 
schema evolution. Instead, new classes are loaded by a 
separate loader. 

Figure 3 illustrates how a Server class can dynamically 
redirect the service requests to a new version of the Service 
class. The key technique is to load the server class, old service 
class, and new service class into separate class loaders. For 
example, we can define Server using the MyClassLoader class 
introduced in the last section. 

class Server { 
private Object service; 

public void updateService(String location) { 
MyClassLoader cl = new MyClassLoader(location); 
Class c = cl.loadClass(“Service”); 
service = c.newlnstance(); 

1 
publicvoid processRequest (...) { 

Class c = service.getClass(); 
Method m = c.getMethod(“run” , . ..). 
m.invoke(service, . ..). 

1 
1 

The Server.processRequest method redirects all incoming 
requests to a Service object stored in a private field. It uses 
the Java Core Reflection API [9] to invoke the “run” method 
on the service object. In addition, the Server.updateService 
method allows a new version of the Service class to be 
dynamically loaded, replacing the existing service object. 
Callers of updateservice supply the the location of the new 
class files. Further requests will be redirected to the new 
object referenced to by service. 

To make reloading possible, the Server class must not 
directly refer to the Service class: 

class Server { 
private Service service; // This is wrong! 
public void updateService(String location) { 

MyClassLoader cl = new MyClassLoader(location); 
Class c = cl.loadClass(“Service”); 
service = (Service)c.newlnstance(); 

> 
> 

Once the Server class resolves the symbolic reference to 
a Service class, it will contain a hard link to that class type. 
An already-resolved reference cannot be changed. The type 
conversion in the last line of the Server.updateService method 
will fail for new versions of Service returned from the class 
loader. 

Reflection allows the Server class to use the Service class 
without a direct reference. Alternatively, Server and Service 
classes can share a common interface or superclass: 

class Server { 
private Servicelnterface service; // use an interface 
public void updateService(String location) { 

MyClassLoader cl = new MyClassLoader(location); 
Class c = cl.loadClass(“Service”); 
service = (Servicelnterface)c.newlnstance(); 

I 
public void processRequest (,..) { 

service.run(...); 

1 
1 

Dispatching through an interface is typically more effi- 
cient than reflection. The interface type itself must not be 
reloaded, because the Server class can refer to only one Ser- 
vicelnterface type. The getServiceClass method must return a 
class that implements the same Servicelnterface every time. 
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After we call the updateservice method, all future requests 
will be processed by the new Service class. The old Service 

class, however, may not have finished processing some of 
the earlier requests. Thus two Service classes may coexist 
for a while, until all uses of the old class are complete, all 
references to the old class are dropped, and the old class is 
unloaded. 

3.2 Instrumenting Class Files 

A class loader can instrument the class file before making the 
defineclass call. For example, in the MyClassLoader example, 
we can insert a call to change the contents of the class file: 

class MyClassLoader extends ClassLoader { 
public synchronized Class loadClass(String name) { 

byten data = getClassData(directory, name); 
bytea newdata = instrumentClassFile(data); 
return defineClass(name, newdata, 0, 

newdata.length()); 

An instrumented class file must be valid according to 
the Java virtual machine specification 1151. The virtual 
machine will apply all the usual checks (such as running 
the byte code verifier) to the instrumented class file. As 
long as the class file format is obeyed, the programmer has 
a great deal of freedom in modifying the class file. For 
example, the instrumented class file may contain new byte 
code instructions in existing methods, new fields, or new 
methods. It is also possible to delete existing methods, but 
the resulting class file might not link with other classes. 

The instrumented class file must define a class of the 
same name as the original class file. The loadClass method 
should return a class object whose name matches the name 
passed in as the argument. (Section 4.1 explains how this 
rule is enforced by the virtual machine.) 

A class loader can only instrument the classes it defines, 
not the classes delegated to other loaders. All user-defined 
class loaders should first delegate to the system class loader, 
thus system classes cannot be instrumented through class 
loaders. User-defined class loaders cannot bypass this re- 
striction by trying to define system classes themselves. If, 
for example, a class loader defines its own String class, it 
cannot pass an object of that class to a Java API that expects 
a standard String object. The virtual machine will catch and 
report these type errors (see section 4 for details). 

Class file instrumentation is useful in many circum- 
stances. For example, an instrumented class file may contain 
profiling hooks that count how many times a certain method 
is executed. Resource allocation may be monitored and 
controlled by substituting references to certain classes with 
references to resource-conscious versions of those classes 
1191. A class loader may be used to implement parameter- 
ized classes, expanding and tailoring the code in a class file 
for each distinct invocation of a parametric type [l]. 

4 Maintaining Type-safe Linkage 

The examples presented so far have demonstrated the use- 
fulness of multiple delegating class loaders. As we will 
see, however, ensuring type-safe linkage in the presence of 
class loaders requires special care. The Java programming 
language relies on name-based static typing. At compile 
time, each static class type corresponds to a class name. At 
runtime, class loaders introduce multiple namespaces. A 
run-time class type is determined not by its name alone, but 
by a pair: its class name and its defining class loader. Hence, 
namespaces introduced by user-defined class loaders may 
be inconsistent with the namespace managed by the Java 
compiler, jeopardizing type safety. 

4.1 Temporal Namespace Consistency 

The loadclass method may return different class types for a 
given name at different times. To maintain type safety, the 
virtual machine must be able to consistently obtain the same 
class type for a given class name and loader. Consider, for 
example, the two references to class X in the following code: 

class C { 
void f(X x) { } 

void g() { f(new X0); ) 
> 

If C’s class loader were to map the two occurrences of X 
into different class types, the type safety of the method call 
to f inside g would be compromised. 

The virtual machine cannot trust any user-defined load- 
Class method to consistently return the same type for a given 
name. Instead, it internally maintains a loaded class cache. The 
loaded class cache maps class names and initiating loaders 
to class types. After the virtual machine obtains a class from 
the loadclass method, it performs the following operations: 

The real name of the class is checked against the name 
passed to the loadClass method. An error is raised 
if loadClass returns a class that does not have the 
requested name. 

If the name matches, the resulting class is cached in the 
loaded class cache. The virtual machine never invokes 
the loadClass method with the same name on the same 
class loader more than once. 

The ClassLoader.findLoadedClass method introduced in 
section 2 performs a lookup in the loaded class cache. 

4.2 Namespace Consistency among Delegating Loaders 

We now describe the type safety problems that can arise with 
delegating class loaders. The problem has been known for 
some time. The first published account was given by Vijay 
Saraswat 1201. 

Notation 4.1 We will represent a class type using the notation 
(C, Ld)L’, where C denotes the name qf the class, Ld denotes the 

40 



class’s d@ning loader, and Li denotes the loader that initiated 
class loading. When we do not care about the defining loader, we 
use a simplrjied notation CL’ to denote that Li is the initiating 
loader of C. When we do not care about the initiating loader, we 
use the simplfied notation (C, Ld) to denote that C is defined by 
Ld. 

Note that if L1 delegates C to Lz, then CL1 = CL2. 
We will now give an example that demonstrates the type 

safety problem. In order to make clear which class loaders 
are involved, we use the above notation where class names 
would ordinarily appear, 

class (C, L1) { 
void f() { 

(Spoofed, LI)~~ x = (Delegated, L~)~l.g(); 

1 
1 
class (Delegated, Lz) { 

(Spoofed, 152)~~ g() { } 

1 

C is defined by L1. As a result, L1 is used to initiate 
the loading of the classes Spoofed and Delegated referenced 
inside C.f. 1,1 defines Spoofed. However, L1 delegates the 
loading of Delegated to Lz, which then defines Delegated. 
Because Delegated is defined by Lz, De1egated.g will use Lz 
to initiate the loading of Spoofed. As it happens, Lz defines a 
different type Spoofed. C expects an instance of (Spoofed, L1 ) 
to be returned by De1egated.g. However, De1egated.g actually 
returns an instance of (Spoofed, Ll), which is a completely 
different class. 

This is an inconsistency between the namespaces of L1 
and Lz. If this inconsistency goes undetected, it allows one 
type to be forged as another type using delegating class 
loaders. To see a how this type safety problem can lead to 
undesirable behaviors, suppose the two versions of Spoofed 
are defined as follows: 

class (Spoofed, LI) { 
public int secret-value; 
public into forged-pointer; 

I 
class (Spoofed, L-J) ( 

private int secret-value; 
private int forged-pointer; 

) 

Class (C, L1) is now able to reveal a private field of an 
instance of (Spoofed, L2) and forge a pointer from an integer 
value: 

class (C, L1) { 
void f() { 

(Spoofed, LI)~’ x = (Delegated, Lz)~’ .g(); 
System.out.println(“secret value = ” + 

x.secret-value); 
System.out.println(“stolen content = ” + 

x.forged-pointer[O]); 

1 
1 

Wecanaccesstheprivatefieldsecret-valueina (Spoofed, 15~) 
instance because the field is declared to be public in 
(Spoofed,L~). We are also able to forge an integer field 
in the (Spoofed, Lp) instance as an integer array, and deref- 
erence a pointer that is forged from the integer. 

The underlying cause of the type-safety problem was the 
virtual machine’s failure to take into account that a class type 
is determined by both the class name and the defining loader. 
Instead, the virtual machine relied on the Java programming 
language notion of using class names alone as types during 
type checking. The problem has since been corrected, as 
described below. 

4.2.1 Solution 

A straightforward solution to the type-safety problem is to 
uniformly use both the class’s name and its defining loader 
to represent a class type in the Java virtual machine. The 
only way to determine the defining loader, however, is to 
actually load the class through the initiating loader. In the 
example in the previous section, before we can determine 
whether C.f’s call to De1egated.g is type-safe, we must first 
load Spoofed in both L1 and Lz, and see whether we obtain 
the same defining loader. The shortcoming of this approach 
is that it sacrifices lazy class loading. 

Our solution preserves the type safety of the straightfor- 
ward approach, but avoids eager class loading. The key idea 
is to maintain a set of loader constraints that are dynamically 
updated as class loading takes place. In the above example, 
instead of loading Spoofed in L1 and Lz, we simply record 
a constraint that Spoofed’1 = SpoofedL2. If Spoofed is later 
loaded by L, or L%, we will need to verify that the existing 
set of loader constraints will not be violated. 

What if the constraint SpoofedL1 = SpoofedL2 is intro- 
duced after Spoofed is loaded by both L1 and Lz? It is 
too late to impose the constraint and undo previous class 
loading. 

We must therefore take both the loaded class cache and 
loader constraint set into account at the same time, We need 
to maintain the invariant: Each entry in the loaded class cache 
satisfies all the loader constraints. The invariant is maintained 
as follows: 

Every time a new entry is about to be added to the 
loaded class cache, we verify that none of the existing 
loader constraints will be violated. If the new entry 
cannot be added to the loaded class cache without 
violating one of the existing loader constraints, class 
loading fails. 

Every time a new loader constraint is added, we 
verify that all loaded classes in the cache satisfy the 
new constraint. If a new loader constraint cannot 
be satisfied by all loaded classes, the operation that 
triggered the addition of the new loader constraint 
fails. 

Let us see how these checks can be applied to the previous 
example. The first line of the C.f method causes the virtual 
machine to generate the constraint SpoofedL1 = SpoofedL2. 
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If L1 and L2 have already loaded the Spoofed class when we 
generate this constraint, an exception will immediately be 
raised in the program. Otherwise, the constraint will be suc- 
cessfully recorded. Assuming De1egated.g loads SpoofedL2 
first, an exception will be raised when C.f tries to load 
SpoofedL1 later on. 

4.2.2 Constraint Rules 

We now state the rules for generating constraints. These 
correspond to situations when one class type may be referred 
to by another class. When two such classes are defined in 
different loaders, there are opportunities for inconsistencies 
across namespaces. 

l If (C, L1) references a field: 

T fieldname; 

declared in class (0, Lz), then we generate the con- 
straint: 

TL’ =TL2 

. If (C, L1) references a method: 

To methodname (TI , . . . , Tn); 

declared in class (D, Lz), then we generate the con 
straints: 

TL’ =TL2 0 o ,...,Tfi’ =TkZ. 

l If (C, LI) overrides a method: 

To methodname (TI , , T,); 

declared in class (0, L2), then we generate the con- 
straints: 

,-L’ = TLZ 0 TLl = TL2 0 1..‘> n n . 

The constraint set {TL1 = TLz,TLz = TL3} indicates 
that T must be loaded as the same class type in L1 and 
Lz, and in Lz and Ls . Even if, during the execution of the 
program, T is never loaded by Lz, distinct versions of T 
could not be loaded by L1 and L,. 

If the loaderconsh.aintsareviolated,ajava.lang.LinkageError 
exception will be thrown. Loader constraints are removed 
from the constraint set when the corresponding class loader 
is garbage-collected. 

4.2.3 Alternate Solutions 

Saraswat 1201 has suggested another approach to maintaining 
type safety in the presence of delegating class loaders. That 
proposal differs from ours in that it suggests that method 
overriding should also be based upon dynamic types rather 
than static (name-based) types. Saraswat’s idea is appealing, 
in that it uses the dynamic concept of type uniformly from 
link time onwards. 

The following code illustrates the differences between his 
model and ours: 

class (Super, LI) { 

void f(Spoofed x) {...codel...) 

1 
class (Sub, Lz) extends (Super, 151) Lz { 

void f(Spoofed x) {...code2...} 

1 
class Main { 

public static void main(String[ args) { 
Spoofed sl = new Spoofed(); 
Sub sub = new Sub(); 
Superduper = sub; 
duper.f(sl); 

1 
1 

Assume that L1 and L2 define different versions of 
Spoofed. Saraswat considers the f methods in Super and Sub 
to have different type signatures: Super.f takes an argument 
of type (Spoofed, L1) whereas Sub.f takes an argument of 
type (Spoofed, Lz). A s a consequence, Su b.f is not considered 
to override Super.f in this model. 

In our model, if Main is loaded by Lz, a linkage error 
results at the point where f is called. The behavior in 
Saraswat’s model is very similar: a NoSuchMethodError 
results. 

The difference in approach becomes apparent when Main 
is loaded by L1 . In our model, when Main is loaded by L1, 
the call to f would invoke code2. A linkage error would be 
raised when code2 attempted to access any fields or methods 
of Spoofed. In Saraswat’s model the call to f executes code1 
(that is, code2 does not override code0 

We believe it is better to fail in this case than to silently 
run code that was not meant to be executed. A programmer’s 
expectation when writing the classes Super and Sub above 
is that Sub.f does override Super.f, in accordance with 
the semantics of the Java programming language. These 
expectations are violated in Saraswat’s proposal. 

Saraswat also suggests a modification to the class loader 
API that would allow the virtual machine to determine 
the run-time type of a symbolic reference without actually 
loading it. This is necessary in order to implement his 
proposal without the penalty of excessive class loading. We 
believe it would be worth exploring this idea independently 
of the other aspects of Saraswat’s proposal. 

Other proposals have also focused on changing the pro- 
tocol of the ClassLoader class, or subdividing its functionality 
among several classes. Such changes typically reduce the 
expressive power of class loaders. 

5 Related Work 

Class loaders can be thought of as a reflective hook into the 
system’s loading mechanism. Reflective systems in other 
object-oriented languages [6, 141 have provided users the 
opportunity to modify various aspects of system behavior. 
One could use such mechanisms to provide user-extensible 
class loading; however, we are not aware of any such 
experiments. 
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Some Lisp dialects (171 and some functional languages 
[2] have a notion of first-class environments, which support 
multiple namespaces similar to those discussed in this paper. 

Dean [5] 141 has discussed the problem of type safety in 
class loaders from a theoretical perspective. He suggests a 
deep link between class loading and dynamic scoping. 

Jensen et al. [12] recently proposed a formalization of 
dynamic class loading in the Java virtual machine. Among 
other findings, the formal approach confirmed the type 
safety problem with class loaders. 

Roskind [18] has put in place link-time checks to ensure 
class loader type safety in Netscape’s Java virtual machine 
implementation. The checks he implemented are more eager 
and strict than ours. 

The Oberon/F system [16] (now renamed Component 

[2] Andrew W. Appel and David B. MacQueen. Standard 
ML of New Jersey. In J. Maluszyliski and M. Wirsing, 
editors, Programming Language implementation and Logic 
Programming, pages 1-13. Springer-Verlag, August 1991. 
Lecture Notes in Computer Science 528. 

[3] Gilles Barbedette. Schema modifications in the LISP 
02 persistent object-oriented language. In European 
Cor@rence on Object-Oriented Programming, pages 77-96, 
July 1991. 

[4] Drew Dean, 1997. Private communication 

[5] Drew Dean. The security of static typing with dynamic 
linking. In Fourth ACM Conference on Computer and 
Communications Security, pages 18-27, April 1997. 

Pascal) allows dynamic loading and type-safe linkage of 
modules. However, the dynamic loading mechanism is not 
under user control, nor does it provide multiple namespaces. 

[6] A. Goldberg and D. Robson. Smalltalk-80: the Language 
and Its Implementation. Addison-Wesley, 1983. 

Dynamically linked libraries have been supported by 
many operating systems. These mechanisms typically do 

[71 James Gosling, Bill Joy, and Guy Steele. The lava 

not provide type-safe linkage. 
Language Spec@cation. Addison-Wesley, Reading, Mas- 
sachusetts, 1996. 

6 Conclusions 

We have presented the notion of class loaders in the Java 
platform. Class loaders combine four desirable features: 
lazy loading, type-safe linkage, multiple namespaces, and 
user extensibility. Type safety, in particular, requires special 
attention. We have shown how to preserve type safety 
without restricting the power of class loaders. 

Class loaders are a simple yet powerful mechanism that 
has proven to be extremely valuable in managing software 
components. 
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