
Dynamic Class Loading in the JavaTM Virtual Machine

Sheng Liang Gilad Bracha
Sun Microsystems Inc.

901 San Antonio Road, CUPO2-302
Palo Alto, CA 94303

{sheng.liang,gilad.bracha}@eng.sun.com

Abstract

Class loaders are a powerful mechanism for dynamically
loading software components on the Java platform. They
are unusual in supporting all of the following features:
laziness, type-q? linkage, user-defined extensibility, and multiple
communicating namespaces.

We present the notion of class loaders and demonstrate
some of their interesting uses. In addition, we discuss how to
maintain type safety in the presence of user-defined dynamic
class loading.

1 Introduction

In this paper, we investigate an important feature of the
Java virtual machine: dynamic class loading. This is the
underlying mechanism that provides much of the power of
the Java platform: the ability to install software components
at nmtime. An example of a component is an applet that is
downloaded into a web browser.

While many other systems 1161 1131 also support some
form of dynamic loading and linking, the Java platform is
the only system we know of that incorporates all of the
following features:

1. Lazy loading. Classes are loaded on demand. Class
loading is delayed as long as possible, reducing mem-
ory usage and improving system response time.

2. Type-s@ linkage. Dynamic class loading must not
violate the type safety of the Java virtual machine.
Dynamic loading must not require additional run-time
checks in order to guarantee type safety. Additional
link-time checks are acceptable, because these checks
are performed only once.

3. User-denable class loading policy. Class loaders are first-
class objects. Programmers have complete control of
dynamic class loading. A user-defined class loader can,

Permossmn to make dlgital or hard copses 01 all or parf of this work for
personal or classroom use IS granted wthout lee prouded that
copies are not made or distributed for profIt or commercial advan-
tage and that coptes bear this notIce and the full cltatlo” 0” the first page
lo copy otherwise, to republtsh. to post on Servers or to
redlstnbute to hsts. requres pnor spec111c permlss~o” and/or a fee
OOPSLA ‘98 lo/98 Vancouver, B.C.
B 1998 ACM 1.58113.005.9/98/0010...55.00

4.

for example, specify the remote location from which
the classes are loaded, or assign appropriate security
attributes to classes loaded from a particular source.

Multiple namespaces. Class loaders provide separate
namespaces for different software components. For
example, the HotjavaTM browser loads applets from
different sources into separate class loaders. These
applets may contain classes of the same name, but the
classes are treated as distinct types by the Java virtual
machine.

In contrast, existing dynamic linking mechanisms do
not support all of these features. Although most operating
systems support some form of dynamic linked libraries, such
mechanisms are targeted toward C/C++ code, and are not
type-safe. Dynamic languages such as Lisp 1131, Smalltalk
[6], and Self [21] achieve type safety through additional
run-time checks, not link-time checks.

The main contribution of this paper is to provide the
first in-depth description of class loaders, a novel concept
introduced by the Java platform. Class loaders existed in
the first version of the Java Development Kit (JDK 1.0). The
original purpose was to enable applet class loading in the
Hotjava browser. Since that time, the use of class loaders
has been extended to handle a wider range of software
components such as server-side components (servlets) [ll],
extensions [lo] to the Java platform, and JavaBeans [8]
components. Despite the increasingly important role of class
loaders, the underlying mechanism has not been adequately
described in the literature.

A further contribution of this paper is to present a
solution to the long-standing type safety problem [20] with
class loaders. Early versions (1.0 and 1.1) of the JDK
contained a serious flaw in class loader implementation.
Improperly written class loaders could defeat the type safety
guarantee of the Java virtual machine. Note that the type
safety problem did not impose any immediate security risks,
because untrusted code (such as a downloaded applet) was
not allowed to create class loaders. Nonetheless, application
programmers who had the need to write custom class loaders
could compromise type safety inadvertently. Although the
issue had been known for some time, it remained an open
problem in the research community whether a satisfactory
solution exists. For example, earlier discussions centered

36

http://crossmark.crossref.org/dialog/?doi=10.1145%2F286942.286945&domain=pdf&date_stamp=1998-10-01

around whether the lack of type safety was a fundamental
limitation of user-definable class loaders, and whether we
would have to limit the power of class loaders, give up

lazy class loading, or introduce additional dynamic type-
checking at runtime. The solution we present in this paper,
which has been implemented in JDK 1.2, solves the type
safety problem while preserving all of the other desirable
features of class loaders.

class ClassLoader {
public Class loadClass(String name);
protected final Class defineClass(String name,

byten buf, int off, int len);

protected final Class findLoadedClass(String name);
protected final Class findSystemClass(String name);

We assume the reader has basic knowledge of the Java
programming language [71. The remainder of this paper
is organized as follows: We first give a more detailed
introduction to class loaders. Applications of class loaders
are discussed in section 3. Section 4 describes the type safety
problems that may arise due to the use of class loaders, and
their solutions. Section 5 relates our work to other research.
Finally, we present our conclusions in section 6.

Figure 1: The ClassLoader class

Applet class loaders Application class loader
T , / \

2 Class Loaders

The purpose of class loaders is to support dynamic loading
of software components on the Java platform. The unit of
software distribution is a class!. Classes are distributed us-
ing a machine-independent, standard, binary representation
known as the classfileformat [15]. The representation of an
individual class is referred to as a class FZe. Class files are
produced by Java compilers, and can be loaded into any Java
virtual machine. A class file does not have to be stored in an
actual file; it could be stored in a memory buffer, or obtained
from a network stream.

System classes
(e.g., java.lang.String)

System class loader

Figure 2: Class loaders in a web browser

The Java virtual machine executes the byte code stored
in class files. Byte code sequences, however, are only part
of what the virtual machine needs to execute a program. A
class file also contains symbolic references to fields, methods,
and names of other classes. Consider, for example, a class C
declared as follows:

We have omitted the methods that are not directly relevant
to this presentation. The ClassLoader.loadClass’ method
takes a class name as argument, and returns a Class object
that is the run-time representation of a class type. The
methods defineclass, findLoadedClass and findSystemClass
will be described later.

class C {
void f() {

D d = new DO;

1
1

In the above example, assume that C is loaded by the
class loader L. L is referred to as C’s defining loader. The Java
virtual machine will use L to load classes referenced by C.
Before the virtual machine allocates an object of class D, it
must resolve the reference to D. If D has not yet been loaded,
the virtual machine will invoke the loadClass method of C’s
class loader, L, to load D:

L.loadClass(“D”)

The class file representing C contains a symbolic reference
to class D. Symbolic references are resolved at link time to
actual class types. Class types are reified first-class objects in
the Java virtual machine. A class type is represented in user
code as an object of class java.lang.Class. In order to resolve a
symbolic reference to a class, the Java virtual machine must
load the class file and create the class type.

Once D has been loaded, the virtual machine can resolve
the reference and create an object of class D.

2.1 Overview of Class Loading

The Java virtual machine uses class loaders to load class
files and create class objects. Class loaders are ordinary
objects that can be defined in Java code. They are instances
of subclasses of the class ClassLoader, shown in Figure 1.

2.2 Multiple Class Loaders

A Java application may use several different kinds of class
loaders to manage various software components. For exam-
ple, Figure 2 shows how a web browser written in Java may
use class loaders.

This example illustrates the use of two types of class
loaders: user-defined class loaders and the system class
loader supplied by the Java virtual machine. User-defined
class loaders can be used to create classes that originate from
user-defined sources. For example, the browser application

‘Throughout this paper, we use the term class generically to denote both ‘We use the notation X.m to refer to an instance method m defined in
classes and interfaces . class X, although this is not legal syntax in the Java programming language.

37

creates class loaders for downloaded applets. We use a
separate class loader for the web browser application itself.
All system classes (such as java.lang.String) are loaded into
the system class loader. The system class loader is supported
directly by the Java virtual machine.

The arrows in the figure indicate the delegation relation-
ship between class loaders. A class loader Lr can ask another
loader I17 to load a class C on its behalf. In such a case, L1
delegates C to /,>. For example, applet and application class
loaders delegate all system classes to the system class loader.
As a result, all system classes are shared among the applets
and the application. This is desirable because type safety
would be violated if, for example, applet and system code
had a different notion of what the type java.lang.String was.

Delegating class loaders allow us to maintain namespace
separation while still sharing a common set of classes. In
the Java virtual machine, a class type is uniquely determined
by the combination of the class name and class loader. Applet
and application class loaders delegate to the system class
loader. This guarantees that all system class types, such
as java.lang String, are unique. On the other hand, a class
named C loaded in applet 1 is considered a different type
from a class named C in applet 2. Although these two
classes have? the same name, they are defined by different
class loaders. In fact, these two classes can be completely
unrelated. For example, they may have different methods or
fields.

Classes from one applet cannot interfere with classes in
another, because applets are loaded in separate class load-
ers. This is crucial in guaranteeing Java platform security.
Likewise, because the browser resides in a separate class
loader, applets cannot access the classes used to implement
the browser. Applets are only allowed to access the standard
Java API exposed in the system classes.

The Java virtual machine starts up by creating the appli-
cation class loader and using it to load the initial browser
class. Application execution starts in the public class method
void main(String[]) of the initial class. The invocation of this
method drives all further execution. Execution of instruc-
tions may cause loading of additional classes. In this
application, the browser also creates additional class loaders
for downloaded applets.

The garbage collector unloads applet classes that are no
longer referenced. Each class object contains a reference to
its defining loader; each class loader refers to all the classes it
defines. This means that, from the garbage collector’s point
of view, classes are strongly connected with their defining
loader. Classes are unloaded when their defining loader is
garbage-collected.

2.3 An Example

We now walk through the implementation of a simple class
loader. As noted earlier, all user-defined class loader classes
are subclasses of ClassLoader. Subclasses of ClassLoader can
override the definition of loadClass, thus providing a user-
defined loading policy. Here is a class loader that looks up
classes in a given directory:

class MyClassLoader extends ClassLoader {

private directory;
public MyClassLoader(String dir) {

directory = dir;

1
public synchronized Class loadClass(String name) {

Class c = findLoadedClass(name);
if (c != null)

return c;

try {
c = findSystemClass(name);
return c;

} catch (ClassNotFoundException e) {
// keep looking

byte0 data = getClassData(directory, name);
return defineClass(name, data, 0, data.length());

} catch (IOException e) {
throw new ClassNotFoundException();

byte0 getClassData(. ..) { . . } // omitted for brevity

>

The public constructor MyClassLoader() simply records
the directory name. In the definition of loadclass, we use
the findLoadedClass method to check whether the class has
already been loaded. (Section 4.1 will give a more precise de-
scription of the findLoadedClass method.) If findLoadedClass
returns n u I I, the class has not yet been loaded. We then dele-
gate to the system class loader by calling findSystemC1as.s. If
the class we are trying to load is not a system class, we call
a helper method getClassData to read in the class file.

After we have read in the class file, we pass it to the
defineclass method. The defineclass method constructs the
run-time representation of the class from the class file. Note
that the loadClass method synchronizes on the class loader
object so that multiple threads may not load the same class
at the same time.

2.4 A Class’s Initiating and Defining Loaders

When one class loader delegates to another class loader, the
class loader that initiates the loading is not necessarily the
same loader that completes the loading and defines the class.
Consider the following code segment:

MyClassLoader cl = new MyClassLoader(” /foe/bar”);
Class stringclass = cl.loadClass(“java.lang.String”);

Instances of the MyClassLoader class delegate the load-
ing of java.lang.String to the system loader. Consequently,
java.lang.String is defined by the system loader, even though
loading was initiated by cl.

Definition 2.1 Let C be the result 4 L.defineClass(). L is the
defining loader OfC, or equivalently, L defines C.

Definition 2.2 Let C be the result @ L.loadClass(). L is an
initiating loader qf C, or equivalently, L initiates loading of C.

38

old

c3

..+Zi--]

Server

*<fk-

Figure 3: Class Server redirects to a new version of Service

class

In the Java virtual machine, every class C is permanently
associated with its defining loader. It is C’s defining loader
that initiates the loading of any class referenced by C.

3 Applications of Class Loaders

In this section, we give a few examples that demonstrate the
power of class loaders.

3.1 Reloading Classes

It is often desirable to upgrade software components in a
long-running application such as a server. The upgrade must
not require the application to shut down and restart.

On the Java platform, this ability translates to reloading
a subset of the classes already loaded in a running virtual
machine. It corresponds to the schema evolution [3] problem,
which could be rather difficult to solve in general. Here are
some of the difficulties:

l There may be live objects that are instances of a class
we want to reload. These objects must be migrated to
conform to the schema of the new class. For example,
if the new version of the class contains a different set
of instance fields, we must somehow map the existing
set of instance field values to fields in the new version
of the class.

Similarly, we may have to map the static field values
to a different set of static fields in the reloaded version
of the class.

The application may be executing a method that be-
longs to a class we want to reload.

We do not address these problems in this paper. Instead,
we show how it is sometimes possible to bypass them using
class loaders. By organizing software components in separate
class loaders, programmers can often avoid dealing with
schema evolution. Instead, new classes are loaded by a
separate loader.

Figure 3 illustrates how a Server class can dynamically
redirect the service requests to a new version of the Service
class. The key technique is to load the server class, old service
class, and new service class into separate class loaders. For
example, we can define Server using the MyClassLoader class
introduced in the last section.

class Server {
private Object service;

public void updateService(String location) {
MyClassLoader cl = new MyClassLoader(location);
Class c = cl.loadClass(“Service”);
service = c.newlnstance();

1
publicvoid processRequest (...) {

Class c = service.getClass();
Method m = c.getMethod(“run” , . ..).
m.invoke(service, . ..).

1
1

The Server.processRequest method redirects all incoming
requests to a Service object stored in a private field. It uses
the Java Core Reflection API [9] to invoke the “run” method
on the service object. In addition, the Server.updateService
method allows a new version of the Service class to be
dynamically loaded, replacing the existing service object.
Callers of updateservice supply the the location of the new
class files. Further requests will be redirected to the new
object referenced to by service.

To make reloading possible, the Server class must not
directly refer to the Service class:

class Server {
private Service service; // This is wrong!
public void updateService(String location) {

MyClassLoader cl = new MyClassLoader(location);
Class c = cl.loadClass(“Service”);
service = (Service)c.newlnstance();

>
>

Once the Server class resolves the symbolic reference to
a Service class, it will contain a hard link to that class type.
An already-resolved reference cannot be changed. The type
conversion in the last line of the Server.updateService method
will fail for new versions of Service returned from the class
loader.

Reflection allows the Server class to use the Service class
without a direct reference. Alternatively, Server and Service
classes can share a common interface or superclass:

class Server {
private Servicelnterface service; // use an interface
public void updateService(String location) {

MyClassLoader cl = new MyClassLoader(location);
Class c = cl.loadClass(“Service”);
service = (Servicelnterface)c.newlnstance();

I
public void processRequest (,..) {

service.run(...);

1
1

Dispatching through an interface is typically more effi-
cient than reflection. The interface type itself must not be
reloaded, because the Server class can refer to only one Ser-
vicelnterface type. The getServiceClass method must return a
class that implements the same Servicelnterface every time.

39

After we call the updateservice method, all future requests
will be processed by the new Service class. The old Service

class, however, may not have finished processing some of
the earlier requests. Thus two Service classes may coexist
for a while, until all uses of the old class are complete, all
references to the old class are dropped, and the old class is
unloaded.

3.2 Instrumenting Class Files

A class loader can instrument the class file before making the
defineclass call. For example, in the MyClassLoader example,
we can insert a call to change the contents of the class file:

class MyClassLoader extends ClassLoader {
public synchronized Class loadClass(String name) {

byten data = getClassData(directory, name);
bytea newdata = instrumentClassFile(data);
return defineClass(name, newdata, 0,

newdata.length());

An instrumented class file must be valid according to
the Java virtual machine specification 1151. The virtual
machine will apply all the usual checks (such as running
the byte code verifier) to the instrumented class file. As
long as the class file format is obeyed, the programmer has
a great deal of freedom in modifying the class file. For
example, the instrumented class file may contain new byte
code instructions in existing methods, new fields, or new
methods. It is also possible to delete existing methods, but
the resulting class file might not link with other classes.

The instrumented class file must define a class of the
same name as the original class file. The loadClass method
should return a class object whose name matches the name
passed in as the argument. (Section 4.1 explains how this
rule is enforced by the virtual machine.)

A class loader can only instrument the classes it defines,
not the classes delegated to other loaders. All user-defined
class loaders should first delegate to the system class loader,
thus system classes cannot be instrumented through class
loaders. User-defined class loaders cannot bypass this re-
striction by trying to define system classes themselves. If,
for example, a class loader defines its own String class, it
cannot pass an object of that class to a Java API that expects
a standard String object. The virtual machine will catch and
report these type errors (see section 4 for details).

Class file instrumentation is useful in many circum-
stances. For example, an instrumented class file may contain
profiling hooks that count how many times a certain method
is executed. Resource allocation may be monitored and
controlled by substituting references to certain classes with
references to resource-conscious versions of those classes
1191. A class loader may be used to implement parameter-
ized classes, expanding and tailoring the code in a class file
for each distinct invocation of a parametric type [l].

4 Maintaining Type-safe Linkage

The examples presented so far have demonstrated the use-
fulness of multiple delegating class loaders. As we will
see, however, ensuring type-safe linkage in the presence of
class loaders requires special care. The Java programming
language relies on name-based static typing. At compile
time, each static class type corresponds to a class name. At
runtime, class loaders introduce multiple namespaces. A
run-time class type is determined not by its name alone, but
by a pair: its class name and its defining class loader. Hence,
namespaces introduced by user-defined class loaders may
be inconsistent with the namespace managed by the Java
compiler, jeopardizing type safety.

4.1 Temporal Namespace Consistency

The loadclass method may return different class types for a
given name at different times. To maintain type safety, the
virtual machine must be able to consistently obtain the same
class type for a given class name and loader. Consider, for
example, the two references to class X in the following code:

class C {
void f(X x) { }

void g() { f(new X0);)
>

If C’s class loader were to map the two occurrences of X
into different class types, the type safety of the method call
to f inside g would be compromised.

The virtual machine cannot trust any user-defined load-
Class method to consistently return the same type for a given
name. Instead, it internally maintains a loaded class cache. The
loaded class cache maps class names and initiating loaders
to class types. After the virtual machine obtains a class from
the loadclass method, it performs the following operations:

The real name of the class is checked against the name
passed to the loadClass method. An error is raised
if loadClass returns a class that does not have the
requested name.

If the name matches, the resulting class is cached in the
loaded class cache. The virtual machine never invokes
the loadClass method with the same name on the same
class loader more than once.

The ClassLoader.findLoadedClass method introduced in
section 2 performs a lookup in the loaded class cache.

4.2 Namespace Consistency among Delegating Loaders

We now describe the type safety problems that can arise with
delegating class loaders. The problem has been known for
some time. The first published account was given by Vijay
Saraswat 1201.

Notation 4.1 We will represent a class type using the notation
(C, Ld)L’, where C denotes the name qf the class, Ld denotes the

40

class’s d@ning loader, and Li denotes the loader that initiated
class loading. When we do not care about the defining loader, we
use a simplrjied notation CL’ to denote that Li is the initiating
loader of C. When we do not care about the initiating loader, we
use the simplfied notation (C, Ld) to denote that C is defined by
Ld.

Note that if L1 delegates C to Lz, then CL1 = CL2.
We will now give an example that demonstrates the type

safety problem. In order to make clear which class loaders
are involved, we use the above notation where class names
would ordinarily appear,

class (C, L1) {
void f() {

(Spoofed, LI)~~ x = (Delegated, L~)~l.g();

1
1
class (Delegated, Lz) {

(Spoofed, 152)~~ g() { }

1

C is defined by L1. As a result, L1 is used to initiate
the loading of the classes Spoofed and Delegated referenced
inside C.f. 1,1 defines Spoofed. However, L1 delegates the
loading of Delegated to Lz, which then defines Delegated.
Because Delegated is defined by Lz, De1egated.g will use Lz
to initiate the loading of Spoofed. As it happens, Lz defines a
different type Spoofed. C expects an instance of (Spoofed, L1)
to be returned by De1egated.g. However, De1egated.g actually
returns an instance of (Spoofed, Ll), which is a completely
different class.

This is an inconsistency between the namespaces of L1
and Lz. If this inconsistency goes undetected, it allows one
type to be forged as another type using delegating class
loaders. To see a how this type safety problem can lead to
undesirable behaviors, suppose the two versions of Spoofed
are defined as follows:

class (Spoofed, LI) {
public int secret-value;
public into forged-pointer;

I
class (Spoofed, L-J) (

private int secret-value;
private int forged-pointer;

)

Class (C, L1) is now able to reveal a private field of an
instance of (Spoofed, L2) and forge a pointer from an integer
value:

class (C, L1) {
void f() {

(Spoofed, LI)~’ x = (Delegated, Lz)~’ .g();
System.out.println(“secret value = ” +

x.secret-value);
System.out.println(“stolen content = ” +

x.forged-pointer[O]);

1
1

Wecanaccesstheprivatefieldsecret-valueina (Spoofed, 15~)
instance because the field is declared to be public in
(Spoofed,L~). We are also able to forge an integer field
in the (Spoofed, Lp) instance as an integer array, and deref-
erence a pointer that is forged from the integer.

The underlying cause of the type-safety problem was the
virtual machine’s failure to take into account that a class type
is determined by both the class name and the defining loader.
Instead, the virtual machine relied on the Java programming
language notion of using class names alone as types during
type checking. The problem has since been corrected, as
described below.

4.2.1 Solution

A straightforward solution to the type-safety problem is to
uniformly use both the class’s name and its defining loader
to represent a class type in the Java virtual machine. The
only way to determine the defining loader, however, is to
actually load the class through the initiating loader. In the
example in the previous section, before we can determine
whether C.f’s call to De1egated.g is type-safe, we must first
load Spoofed in both L1 and Lz, and see whether we obtain
the same defining loader. The shortcoming of this approach
is that it sacrifices lazy class loading.

Our solution preserves the type safety of the straightfor-
ward approach, but avoids eager class loading. The key idea
is to maintain a set of loader constraints that are dynamically
updated as class loading takes place. In the above example,
instead of loading Spoofed in L1 and Lz, we simply record
a constraint that Spoofed’1 = SpoofedL2. If Spoofed is later
loaded by L, or L%, we will need to verify that the existing
set of loader constraints will not be violated.

What if the constraint SpoofedL1 = SpoofedL2 is intro-
duced after Spoofed is loaded by both L1 and Lz? It is
too late to impose the constraint and undo previous class
loading.

We must therefore take both the loaded class cache and
loader constraint set into account at the same time, We need
to maintain the invariant: Each entry in the loaded class cache
satisfies all the loader constraints. The invariant is maintained
as follows:

Every time a new entry is about to be added to the
loaded class cache, we verify that none of the existing
loader constraints will be violated. If the new entry
cannot be added to the loaded class cache without
violating one of the existing loader constraints, class
loading fails.

Every time a new loader constraint is added, we
verify that all loaded classes in the cache satisfy the
new constraint. If a new loader constraint cannot
be satisfied by all loaded classes, the operation that
triggered the addition of the new loader constraint
fails.

Let us see how these checks can be applied to the previous
example. The first line of the C.f method causes the virtual
machine to generate the constraint SpoofedL1 = SpoofedL2.

41

If L1 and L2 have already loaded the Spoofed class when we
generate this constraint, an exception will immediately be
raised in the program. Otherwise, the constraint will be suc-
cessfully recorded. Assuming De1egated.g loads SpoofedL2
first, an exception will be raised when C.f tries to load
SpoofedL1 later on.

4.2.2 Constraint Rules

We now state the rules for generating constraints. These
correspond to situations when one class type may be referred
to by another class. When two such classes are defined in
different loaders, there are opportunities for inconsistencies
across namespaces.

l If (C, L1) references a field:

T fieldname;

declared in class (0, Lz), then we generate the con-
straint:

TL’ =TL2

. If (C, L1) references a method:

To methodname (TI , . . . , Tn);

declared in class (D, Lz), then we generate the con
straints:

TL’ =TL2 0 o ,...,Tfi’ =TkZ.

l If (C, LI) overrides a method:

To methodname (TI , , T,);

declared in class (0, L2), then we generate the con-
straints:

,-L’ = TLZ 0 TLl = TL2 0 1..‘> n n .

The constraint set {TL1 = TLz,TLz = TL3} indicates
that T must be loaded as the same class type in L1 and
Lz, and in Lz and Ls . Even if, during the execution of the
program, T is never loaded by Lz, distinct versions of T
could not be loaded by L1 and L,.

If the loaderconsh.aintsareviolated,ajava.lang.LinkageError
exception will be thrown. Loader constraints are removed
from the constraint set when the corresponding class loader
is garbage-collected.

4.2.3 Alternate Solutions

Saraswat 1201 has suggested another approach to maintaining
type safety in the presence of delegating class loaders. That
proposal differs from ours in that it suggests that method
overriding should also be based upon dynamic types rather
than static (name-based) types. Saraswat’s idea is appealing,
in that it uses the dynamic concept of type uniformly from
link time onwards.

The following code illustrates the differences between his
model and ours:

class (Super, LI) {

void f(Spoofed x) {...codel...)

1
class (Sub, Lz) extends (Super, 151) Lz {

void f(Spoofed x) {...code2...}

1
class Main {

public static void main(String[args) {
Spoofed sl = new Spoofed();
Sub sub = new Sub();
Superduper = sub;
duper.f(sl);

1
1

Assume that L1 and L2 define different versions of
Spoofed. Saraswat considers the f methods in Super and Sub
to have different type signatures: Super.f takes an argument
of type (Spoofed, L1) whereas Sub.f takes an argument of
type (Spoofed, Lz). A s a consequence, Su b.f is not considered
to override Super.f in this model.

In our model, if Main is loaded by Lz, a linkage error
results at the point where f is called. The behavior in
Saraswat’s model is very similar: a NoSuchMethodError
results.

The difference in approach becomes apparent when Main
is loaded by L1 . In our model, when Main is loaded by L1,
the call to f would invoke code2. A linkage error would be
raised when code2 attempted to access any fields or methods
of Spoofed. In Saraswat’s model the call to f executes code1
(that is, code2 does not override code0

We believe it is better to fail in this case than to silently
run code that was not meant to be executed. A programmer’s
expectation when writing the classes Super and Sub above
is that Sub.f does override Super.f, in accordance with
the semantics of the Java programming language. These
expectations are violated in Saraswat’s proposal.

Saraswat also suggests a modification to the class loader
API that would allow the virtual machine to determine
the run-time type of a symbolic reference without actually
loading it. This is necessary in order to implement his
proposal without the penalty of excessive class loading. We
believe it would be worth exploring this idea independently
of the other aspects of Saraswat’s proposal.

Other proposals have also focused on changing the pro-
tocol of the ClassLoader class, or subdividing its functionality
among several classes. Such changes typically reduce the
expressive power of class loaders.

5 Related Work

Class loaders can be thought of as a reflective hook into the
system’s loading mechanism. Reflective systems in other
object-oriented languages [6, 141 have provided users the
opportunity to modify various aspects of system behavior.
One could use such mechanisms to provide user-extensible
class loading; however, we are not aware of any such
experiments.

42

Some Lisp dialects (171 and some functional languages
[2] have a notion of first-class environments, which support
multiple namespaces similar to those discussed in this paper.

Dean [5] 141 has discussed the problem of type safety in
class loaders from a theoretical perspective. He suggests a
deep link between class loading and dynamic scoping.

Jensen et al. [12] recently proposed a formalization of
dynamic class loading in the Java virtual machine. Among
other findings, the formal approach confirmed the type
safety problem with class loaders.

Roskind [18] has put in place link-time checks to ensure
class loader type safety in Netscape’s Java virtual machine
implementation. The checks he implemented are more eager
and strict than ours.

The Oberon/F system [16] (now renamed Component

[2] Andrew W. Appel and David B. MacQueen. Standard
ML of New Jersey. In J. Maluszyliski and M. Wirsing,
editors, Programming Language implementation and Logic
Programming, pages 1-13. Springer-Verlag, August 1991.
Lecture Notes in Computer Science 528.

[3] Gilles Barbedette. Schema modifications in the LISP
02 persistent object-oriented language. In European
Cor@rence on Object-Oriented Programming, pages 77-96,
July 1991.

[4] Drew Dean, 1997. Private communication

[5] Drew Dean. The security of static typing with dynamic
linking. In Fourth ACM Conference on Computer and
Communications Security, pages 18-27, April 1997.

Pascal) allows dynamic loading and type-safe linkage of
modules. However, the dynamic loading mechanism is not
under user control, nor does it provide multiple namespaces.

[6] A. Goldberg and D. Robson. Smalltalk-80: the Language
and Its Implementation. Addison-Wesley, 1983.

Dynamically linked libraries have been supported by
many operating systems. These mechanisms typically do

[71 James Gosling, Bill Joy, and Guy Steele. The lava

not provide type-safe linkage.
Language Spec@cation. Addison-Wesley, Reading, Mas-
sachusetts, 1996.

6 Conclusions

We have presented the notion of class loaders in the Java
platform. Class loaders combine four desirable features:
lazy loading, type-safe linkage, multiple namespaces, and
user extensibility. Type safety, in particular, requires special
attention. We have shown how to preserve type safety
without restricting the power of class loaders.

Class loaders are a simple yet powerful mechanism that
has proven to be extremely valuable in managing software
components.

Acknowledgements

The authors wish to thank Drew Dean, Jim Roskind, and
Vijay Saraswat for focusing our attention on the type safety
problem, and for many valuable exchanges.

We owe a debt to David Connelly, Li Gong, Benjamin
Renaud, Roland Schemers, Bill Shannon, and many of our
other colleagues at Sun Java Software for countless discus-
sions on security and class loaders. Arthur van Hoff first
conceived of class loaders.

[8] JavaSoft, Sun Microsystems, Inc. JavaBeans Components
API@ Java, 1997. JDK 1.1 documentation, available at
http://java.sun.com/products/jdk/l.l/docs/guide/beans.

[9] JavaSoft, Sun Microsystems, Inc. RtffIection,
1997. JDK 1.1 documentation, available at
http://java.sun.com/products/jdk/l.l/docs/guide/reflection.

[lOI JavaSoft, Sun Microsystems, Inc. The lava Extensions
Framework, 1998. JDK 1.2 documentation, available at
http://java.sun.com/products/jdk/l.2/docs/guide/extens;ons.

[ll] JavaSoft, Sun Microsystems, Inc. Servlet,
1998. JDK 1.2 documentation, available at
http://java,sun,com/products/jdk/l,2/docs/ext/servlet.

[121 Thomas Jensen, Daniel Le Metayer, and Tommy Thorn.
Security and dynamic class loading in Java: A formali-
sation. In Proceedings #IEEE International Col-tference on
Computer Languages, Chicago, Illinois, pages 4-15, May
1998.

[131 Sonya E. Keene. Object-Oriented Programming in Common
Lisp. Addison-Wesley, 1989.

Bill Maddox, Marianne Mueller, Nicholas Sterling, David
Stoutamire, and the anonymous reviewers for OOPSLA’98
suggested numerous improvements to this paper.

Finally, we thank James Gosling for creating the Java

1141 Gregor Kiczales, Jim des Rivieres, and Daniel G. Bobrow.
The Art ofthe Metaobject Protocol. MIT Press, Cambridge,
Massachusetts, 1991.

programming language.

References

[15] TimLindholm and FrankYellin. TheJaua Virtual Machine
Specification. Addison-Wesley, Reading, Massachusetts,
1996.

[l] Ole Agesen, Stephen N. Freund, and John C. Mitchell.
Adding type parameterization to the Java language.
In Proc. of the ACM Co@ on Object-Oriented Program-
ming, Systems, Languages and Applications, pages 49-65,
October 1997.

I161 Oberon Microsystems, Inc. Component Pas-
cal Language Report, 1997. Available at
http:/www.oberon.ch/docu/language-report.html.

[17] Jonathan A. Rees, Norman I. Adams, and James R.
Meehan. The T Manual, Fourth Edition. Department of
Computer Science, Yale University, January 1984.

43

[18] Jim Roskind, 1997. Private communication.

[19] Vijay Saraswat. Matrix design notes.
http://www.research.att.com/“vj/matrix.html.

[20] Vijay Saraswat. Java is not type-safe. available at
http://www.research.att.com/“vj/bug.html, 1997.

[21] David Ungar and Randall Smith. SELF: The power of
simplicity. In Proc. qf the ACM Co@ on Object-Oriented
Programming, Systems, Languages and Applications, Octo-
ber 1987.

44

